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Learning targets

Learning targets

• Discussion on discrete symmetries: charge conjugation and parity

• Symmetry transformation for fermions

• Meson parity, helicity and chirality

• Examples of symmetry violation
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Symmetries

• The symmetries of empty space should be respected by a physical theory

• example: there is no preferred direction in space ⟹ any experiment should give the same results before and after rotation 

• In addition to the continuous space-time symmetries (rotations, translations) there are two discrete 

transformations 

• Parity (𝑃): 𝑡, 𝑥⃗ → 𝑡, −𝑥⃗

• Time reversal 𝑇 : 𝑡, 𝑥⃗ → −𝑡, 𝑥⃗

• From the definition, it follows that 𝑃! = 𝑇! = 1
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Symmetries: parity

• We say that a theory obeys 𝑃 symmetry if there is no experiment that can distinguish between a world 

and its mirror image
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P-even P-odd

? ?



Symmetries: parity

• We say that a theory obeys 𝑃 symmetry if the is no experiment that can distinguish between a world 

and its mirror image
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P-even P-odd

time 𝑡 position 𝑥⃗
angular momentum momentum 𝑝⃗

mass density force

electric charge electric current

magnetic field electric field



Symmetries: parity
• Parity transformation on a scalar field 𝜑 and a vector field 𝐴"

• For a plane wave, a coordinate transformation defines how the momentum transforms

• For electromagnetic field, polarization vector reflects as well
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𝜑 𝑥⃗, 𝑡 → 𝜑, 𝑥⃗, 𝑡 = 𝜑 −𝑥⃗, 𝑡

𝐴- 𝑥⃗, 𝑡
𝐴 𝑥⃗, 𝑡

→
𝐴-, 𝑥⃗, 𝑡
𝐴, 𝑥⃗, 𝑡

=
𝐴- −𝑥⃗, 𝑡
−𝐴 −𝑥⃗, 𝑡

𝜙.⃗ ∝ 𝑒/.⃗⋅1⃗ → 𝑒2/.⃗⋅1⃗ ∝ 𝜙2.⃗	 𝑝⃗ → −𝑝⃗

𝐴.⃗ ∝ 𝜖𝑒/.⃗⋅1⃗ → −𝜖𝑒2/.⃗⋅1⃗ ∝ −𝐴2.⃗	 𝜖 → −𝜖

What about fermions?

Transform non-trivially under rotations and Lorentz transformations, but not as normal vectors.
What do they see in the mirror?



Fermion quantum numbers

• Let’s start by first fixing the electron state using quantum numbers – eigenvalues of operators that 

commute with the Hamiltonian

• For the Dirac Hamiltonian there are two such quantities: momentum and helicity!

• The two operators are also commuting with each other: 𝑝, ℎ = 0

• The state of a fermion can be described by its energy 𝐸, momentum 𝑝, and helicity ℎ 

• States with fixed (𝐸, 𝑝⃗, ℎ) form a basis in Hilbert space of Dirac fermions 
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Momentum:                    /⃗𝑝, 𝐻 = −𝑖∇, 𝐻 = 0

Helicity ℎ ≡ #⋅&⃗
&⃗

: Σ ⋅ 𝑝⃗, 𝐻 = −𝑖∇, 𝐻 = 0 (lecture/exercise sheet 6)	



Parity transformation for fermions

• The parity transformation acts on the basis states as 𝐸, 𝑝⃗, ℎ → 𝐸,−𝑝⃗, −ℎ

• How does it act on an arbitrary state 𝜓?

• Dirac equation transforms as:

• Where 𝜓' is a spinor 𝜓 after parity transformation

• To restore the initial Dirac equation, one should take 𝜓' = 𝛾(𝜓 − 𝑥⃗, 𝑡  so that

• Example: show explicitly that the helicity is a 𝑃 −odd quantity 𝑃ℎ = −ℎ𝑃  
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𝑃𝜓 𝑥⃗, 𝑡 = 𝛾-𝜓 −𝑥⃗, 𝑡

𝑖𝛾"𝜕" −𝑚 𝜓 𝑥⃗, 𝑡 = 𝑖𝛾#𝜕# + 𝑖𝛾$𝜕$ −𝑚 𝜓 → 𝑖 𝛾"𝜕"
% −𝑚 𝜓& = 𝑖𝛾#𝜕# − 𝑖𝛾$𝜕$ −𝑚 𝜓&



Chirality

• In the given reference frame, the basis of Dirac fermions can be chosen as 𝐸, 𝑝⃗, ℎ

• However: helicity is not Lorentz-invariant as long as the mass of the particle is not zero

• For any particle with 𝑚 ≠ 0 we can always make a Lorentz boost flipping the direction of 𝑝⃗ and 

therefore flipping the sign of ℎ: ℎ → −ℎ

• There exists a similar 𝑃 −odd scalar quantity, that respects relativity but in general is not conserved: 

chirality

• In the massless limit helicity and chirality coincide meaning that all the states with definite ℎ also have 

definite chirality
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Chirality

• In the Weyl basis 𝛾" = 0 𝜎"
A𝜎" 0  the spinor 𝜓 can be split into two independent parts Ψ), Ψ*

• These parts evolve independently for massless particles:

• We call 𝜓)	left-chiral spinor and 𝜓* right-chiral spinor
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𝑖𝛾"𝜕" 𝜓 = 0 𝑖(𝜕' + 𝜎⃗ ⋅ ∇)
𝑖(𝜕' − 𝜎⃗ ⋅ ∇) 0

Ψ3
Ψ4

=
0
0 	 ⟹

𝜓 =
Ψ!
Ψ"

𝑖 𝜕8 + 𝜎⃗ ⋅ ∇ Ψ9 = 0

𝑖 𝜕8 − 𝜎⃗ ⋅ ∇ Ψ3 = 0

𝜓3 =
Ψ3
0

𝜓4 =
0
Ψ4

Two independent free particles



Chirality

• Left and right-chiral spinors 𝜓)/* are eigenstates of the chirality operator 𝛾,

• We can extract left and right-chiral parts of the arbitrary spinor 𝜓 using the chirality projectors
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𝜓3 =
1 − 𝛾:
2

𝜓

𝛾: = 𝑖𝛾-𝛾;𝛾<𝛾= = −𝕀 0
0 𝕀 ⟹

𝜓4 =
1 + 𝛾:
2

𝜓

𝛾:Ψ9 = Ψ9
𝛾:Ψ3 = −Ψ>



Relation between helicity and chirality
• Chirality matrix anticommutes with all 𝛾 matrices

• In particular, 𝛾,𝛾( = −𝛾(𝛾,. Hence chirality is P-odd, i.e. 𝑃𝜓)/- = 𝜓*/)

• Unlike helicity, chirality is Lorentz-invariant, but not conserved as long as 𝑚 ≠ 0

• Let us find relation between helicity and chirality for a massless particles

• For a plane wave ansatz 𝜓&⃗ 𝑥⃗ = exp −𝑝"𝑥" 𝑢 𝑝⃗  Dirac equation gives: 𝑝(𝑢 𝑝⃗ = 𝛾( 𝛾⃗ ⋅ 𝑝⃗ 𝑢 𝑝⃗

• multiplying it by 𝛾# from the left and using 𝛾#𝛾$𝛾% = Σ%

• i.e. for massless particle chirality and helicity are defined simultaneously (however, up to a minus sign 

for antiparticles) 12

{𝛾A, 𝛾:} 	= 0

𝛾:𝜓 A
+2Bℎ𝜓, 	 𝑝- > 0
−2Bℎ𝜓, 	 𝑝- < 0



Summary on helicity and chirality

1. Helicity is conserved and related to the momentum and spin of the particle ⟹ measurable physical 

quantity

2. Chirality is an unobservable mathematical construction, allowing correct relativistic description

3. Both are 𝑃 −odd

4. For massless particles, states with definite helicity and chirality coincide
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Meson parity

• Parity of mesons

    using that we defined the intrinsic parity of particles as +1 (and hence that of antiparticles as −1)

• As a consequence, 𝑙 = 0 mesons have odd intrinsic parity

• The photon has parity −1, as have all other exchange particles (vector bosons)

• Parity is conserved in QED and QCD (but not in the weak interaction)
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𝑃 𝑞G𝑞 = 𝑃 𝑞 𝑃 G𝑞 × −1 B = +1 −1 −1 B = −1 BC;



Symmetries of QED

• Parity 𝑷: 𝜓 𝑥⃗, 𝑡 → 𝛾(𝜓 −𝑥⃗, 𝑡 	

• 𝐴& transforms in the same way as 𝜕& - this is a symmetry of the full Hamiltonian 

• 𝑃 interchanges 𝜓! and 𝜓" 𝑃!𝜓"/! = 𝜓!/"  electromagnetic interaction does not distinguish two components and 

interacts with both of them in the same way

• Charge conjugation 𝑪: 𝜓 𝑥⃗, 𝑡 → −𝑖𝛾!𝜓∗ 𝑥⃗, 𝑡 	

• 𝐶 swaps particles for antiparticles

• The symmetry of the total Hamiltonian of fermions and photons also involves transformation 𝐴! → 𝐴!"

• As a consequence, photons have 𝐶 = −1 (EM field changes sign under 𝐶) 15

𝑖𝛾"𝜕" − 𝑒𝛾"𝐴" − 	𝑚 𝜓 𝑥⃗, 𝑡 = 0

𝑖𝛾"𝜕" + 𝑒𝛾"𝐴" − 	𝑚 𝜓+ ⟹ 𝑖𝛾"𝜕" − 𝑒𝛾"𝐴"+ − 	𝑚 𝜓+

𝐴"+ = −𝐴"



Charge conjugation eigenstates

• Most particles are not eigenstates of 𝐶 (e.g. leptons, quarks, charged pions) − particle needs to be its 

own antiparticle

• Photons, and neutral mesons that are combinations of 𝑢M𝑢, 𝑑𝑑̅, 𝑠𝑠̅, 𝑐 ̅𝑐 are eigenstates

• Note that being neutral does not imply that a particle is a charge conjugation eigenstate, e.g. neutron 

𝐶 ⟩|𝑛 → ⟩|M𝑛

• System consisting of a fermion and its antiparticle is eigenstate with 𝐶 = −1 /01 (compare with parity 

𝑃 = −1 /02)
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Symmetries in QED: examples I

• Bound system of interacting electron + positron may be in different states, similar to that of hydrogen 

atom

• For instance, they can be in state with zero spin momentum – parapositronium, 𝑆 = 0, and an exited state 

with 𝑆 = 1 is called ortopositronium

• When one applies 𝐶 −transformation to a system of particle + antiparticle, the wave function 𝜓 𝑒3, 𝑒0  

turns to 𝜓 𝑒0, 𝑒3 , which differs from the initial one by a factor of −1 4 due to permutation of fermions

• Spatial permutation of two fermions gives −1 times parity factor −1 ). If spins are antiparallel 𝑆 = 0 . 

spin wave function is antisymmetric, while for parallel spins 𝑆 = 1  it is symmetric – restoring initial 

spin configuration gives additional −1 502 factor
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Parapositronium 𝐶 = 1 	 → 𝛾 + 𝛾

Ortopositronium 𝐶 = −1 → 𝛾 + 𝛾 + 𝛾



Symmetries in QED: examples II

• In the lowest order of perturbation theory Furry’s theorem states that the probability is zero

• One can speculate that in any order there are such loops with odd number of photons and therefore the 

process has zero probability 

• On the other hand, the process 𝛾 + 𝛾 → 𝛾 + 𝛾 + 𝛾 is forbidden in general, since

     just analyzing the initial and final states 
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−1 J!,#$#%#&' ≠ −1 J!,(#$&'

forbidden



Symmetries in QED: examples II

• Neutral pion 𝜋( decays into two photons

• This is an electromagnetic annihilation process. From the final 𝐶 −value, 𝐶 = −1 ! = 1 we can infer 

that 𝐶 = 1 for neutral pions

• Then a process 𝜋( → 𝛾 + 𝛾 + 𝛾	(𝐶6789: = −1) is forbidden!
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𝜋- 𝑢G𝑢 − 𝑑𝑑̅ → 𝛾 + 𝛾



Symmetries in general

• As we have shown, one can check if a process is allowed without even knowing explicitly physics 

beyond the process

• This happens because particles have quantum numbers related to symmetries

• If an interaction respects a symmetry, the corresponding quantum numbers must be conserved 

• a trivial example is conservation of electric charge

• Let’s show how this works in general

• Assume we have a symmetry operator 𝐴 that commutes with the Hamiltonian

   then the eigenstates of 𝐻 are also eigenstates of 𝐴
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𝐴,𝐻 = 0



Symmetries in general

• Consider a Hamiltonian that is a sum of a free particle Hamiltonian 𝐻( and interaction 𝑉: 	𝐻 = 𝐻( + 𝑉

• If 𝐴 is a symmetry for both 𝐻( and 𝑉

• then the eigenstates of 𝐻( (particles we observe) can be divided into sets with definite value of 𝐴. 

During the time evolution, the value of 𝐴 does not change
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𝐴,𝐻- = 𝐴, 𝑉 = 0



Symmetries in general

• If we start with an eigenstate of the initial Hamiltonian 𝐻(, transitions are possible only into states with 

the same eigenvalues of 𝐴

• We can find out whether a process is forbidden by a symmetry by just analyzing initial and final states 

– selection rules

• The result does not depend on the explicit form of the interaction 𝑉, i.e., this works not only within the 

framework perturbation theory but in general
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Examples of 𝑷 violation: beta decay

Experimental setup

• ;(𝐶𝑜 decays emitting two fermions: a neutrino and an electron

• During the transition the nuclei change their angular momentum by Δ𝐽 = 1

• There are two options with different helicities

• They are related by parity but only one option is observed!
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Examples of 𝑷 violation: beta decay

• In 𝛽 decays of ;(𝐶𝑜	only neutrinos whose spin is antiparallel to their momentum were observed
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Parity is violated in 𝜷 decays



Examples of 𝑷 violation: beta decay

• Neutrinos are produced with positron and antineutrinos with electrons

• Antineutrinos produced in 𝛽 −decays have only positive helicity (their spin is always parallel to their 

momentum)

• It seems that the actual symmetry of nature is the combined 𝐶𝑃 symmetry, when in addition to 

changing helicity we replace a particle by its antiparticle

• For fermions, parity transformation 𝑃 could also include 𝐶 conjugation. A particle looking in the mirror 

sees its antiparticle!
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Examples of 𝑷 violation: beta decay

• It seems that also 𝐶𝑃 is slightly violated in nature
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Examples of 𝑷 violation: beta decay
• To construct a theory of this process, we must use helicity states. However, the helicity states are not 

Lorentz-invariant!

• Solution: use eigenstates of 𝛾, instead. In addition, 𝛾, respects 𝐶𝑃 as well

• this means that 𝜓(𝜈, ℎ = −) and 𝜓 𝜈̅, ℎ = +  for massless neutrinos both belong to 𝜓! spinor

• The Hamiltonian should contain only 𝜓) 

• Only left-handed neutrinos (with left chirality) interact weakly. If neutrinos were massless, the right-

handed counterpart (right-handed neutrinos) would not interact with anything and therefore be 

redundant

• Although for electrons the difference between helicity and chirality plays some role (electrons are 

produced with both helicities), interactions at higher energies 𝐸 ≫ 𝑚< also reveal the fact that only the 

left component, 𝜓), interacts weakly
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Kaon decays
• Neutral kaons differ from their antiparticles: 𝐾( 𝑑𝑠̅ ≠ 𝐾((𝑑̅𝑠)

• These particles actually live in two superpositions: one with positive 𝐶𝑃 value 𝐾5(𝐶𝑃 = 1) and one with 

negative one 𝐾) 𝐶𝑃 = −1

• Pions have 𝑃 = −1 and 𝐶 = 1 neutral . The allowed decays modes for the two neutral kaons are

    (total angular momentum is zero)

• Since 𝑚= only sightly exceeds 3𝑚>, 𝐾) → 3𝜋 decay width is kinematically suppressed and therefore 

𝐾)(𝐾 − long) lifetime is much larger than that of 𝐾5(𝐾 − short) 
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𝐾N → 𝜋𝜋	 𝜋-𝜋-	or	𝜋C𝜋2 	 𝐶𝑃 = +1 

𝐾3 → 𝜋𝜋𝜋	 𝐶𝑃 = −1 



Summary

• We studied 𝐶 and 𝑃 symmetries

• Learned selection rules − can be used to investigate if a process is forbidden by analysing initial and 

final states of an interaction (when the interaction and the free-particle Hamiltonian both conserve a 

given quantity)

• Next semester: unlike the strong and EM interactions, the weak interaction violates both 𝑃 and 𝐶𝑃 

symmetry

• One needs (beyond other prerequisites) both 𝑃 and 𝐶𝑃 violation to accumulate charge
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Summary of Lecture 13
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Main learning outcomes

• Discussion on discrete symmetries: charge conjugation and parity

• Symmetry transformation for fermions

• Meson parity, helicity and chirality

• Examples of symmetry violation


