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Learning targets

Learning targets

Discussion on discrete symmetries: charge conjugation and parity
Symmetry transformation for fermions
Meson parity, helicity and chirality

Examples of symmetry violation



Symmetries

« The symmetries of empty space should be respected by a physical theory

« example: there is no preferred direction in space = any experiment should give the same results before and after rotation

* In addition to the continuous space-time symmetries (rotations, translations) there are two discrete

transformations
* Parity (P): (t,x) = (t,—%)

e Time reversal (T): (t,%X) - (—t, X)

« From the definition, it follows that P2 =T? = 1



Symmetries: parity

* We say that a theory obeys P symmetry if there is no experiment that can distinguish between a world

and its mirror image

P-even | P-odd




Symmetries: parity

* We say that a theory obeys P symmetry if the is no experiment that can distinguish between a world

and its mirror image

P-even P-odd
time t position X
angular momentum momentum p
mass density force
electric charge electric current
magnetic field electric field



Symmetries: parity
* Parity transformation on a scalar field ¢ and a vector field 4,

QD()Z'), t) - <P’(9_C)» t) — (p(—f, t)

Ao(X, t) Ap(x, t) Ao(—x,t)
(ff(f,t)> (A (%, t)) ( A(-%, )>

 For a plane wave, a coordinate transformation defines how the momentum transforms

-

gbﬁ x eiP¥ 5 p—iPX 4)—13 ﬁ - —p

* For electromagnetic field, polarization vector reflects as well

Transform non-trivially under rotations and Lorentz transformations, but not as normal vectors.
What do they see in the mirror?



Fermion quantum numbers

Let’s start by first fixing the electron state using quantum numbers — eigenvalues of operators that

commute with the Hamiltonian

For the Dirac Hamiltonian there are two such quantities: momentum and helicity!
Momentum: ﬁ, H] =[-iV,H] =0

Helicity ( = %): f -, H] = [—iV, H| = 0 (lecture/exercise sheet 6)

The two operators are also commuting with each other: [p, h] = 0
The state of a fermion can be described by its energy E, momentum p, and helicity h

States with fixed (E, p, h) form a basis in Hilbert space of Dirac fermions



Parity transformation for fermions

The parity transformation acts on the basis states as (E,p, h) = (E,—p, —h)
How does it act on an arbitrary state 1?

Dirac equation transforms as:

(iv#0, —m)p(x,t) = (iy°0y + iy'o; — m)y - (i(yﬂaﬂ) - m) Yp = (iy°0y — iy'd; — m)p
Where 1p is a spinor ¢ after parity transformation
To restore the initial Dirac equation, one should take p = )/01/)(— X, t) so that

PY(X,t) = y P (=%, t)

Example: show explicitly that the helicity is a P —odd quantity (Ph = —hP)



Chirality

In the given reference frame, the basis of Dirac fermions can be chosen as (E, p, h)
However: helicity is not Lorentz-invariant as long as the mass of the particle is not zero

For any particle with m # 0 we can always make a Lorentz boost flipping the direction of p and

therefore flipping the sign of h: h —» —h

There exists a similar P —odd scalar quantity, that respects relativity but in general is not conserved:

chirality

In the massless limit helicity and chirality coincide meaning that all the states with definite h also have

definite chirality



Chirality

0 ot

* In the Weyl basis y* = (5u 0

) the spinor ¥ can be split into two independent parts ¥, Wx

* These parts evolve independently for massless particles:

(iyl‘a )1/) B ( 0 i(0; + 7 - V)) (‘-IJL) B (O) _ i((’)t +0 - V))LPR = (
w¥ =\, .3 =
i(0;— V) 0 FR i(0; — G- V)W, =0

¥ 0
Y, = ( L) Two independent free particles Yp = ( )
0 v,

* We call ¢, left-chiral spinor and 1 » right-chiral spinor



Chirality

* Left and right-chiral spinors ), /p are eigenstates of the chirality operator y>

Y =Y
Ve = iy0y1y2y3 _ (—H O) N V5 TR R
> 0 I ysW, = ¥

* We can extract left and right-chiral parts of the arbitrary spinor y using the chirality projectors

1 - 1+
Y=y Vr =1



Relation between helicity and chirality

¢ Chirality matrix anticommutes with all y matrices

r*vs} =0

In particular, y5y°® = —y°ys. Hence chirality is P-odd, i.e. Py jr = Y1

Unlike helicity, chirality is Lorentz-invariant, but not conserved as long as m # 0

Let us find relation between helicity and chirality for a massless particles

For a plane wave ansatz y;(X) = exp|—p,x*|u(p) Dirac equation gives: pou(p) = yo (7 - B)u(p)
» multiplying it by ys from the left and using ysy°y' = ;

+2hy, po > 0

)/51/) —Zﬁlp, Po <0

* i.e. for massless particle chirality and helicity are defined simultaneously (however, up to a minus sign

for antiparticles)



Summary on helicity and chirality

Helicity is conserved and related to the momentum and spin of the particle = measurable physical

quantity
Chirality is an unobservable mathematical construction, allowing correct relativistic description

Both are P —odd

For massless particles, states with definite helicity and chirality coincide



Meson parity

Parity of mesons
P(qq) = P(@QP(@x(-1)' = +D(-D(-D"' = (-D)'**
using that we defined the intrinsic parity of particles as +1 (and hence that of antiparticles as —1)
As a consequence, | = 0 mesons have odd intrinsic parity
The photon has parity —1, as have all other exchange particles (vector bosons)

Parity is conserved in QED and QCD (but not in the weak interaction)



Symmetries of QED

(iy“(?” —eyH4, — m)p(E,t) =0
* Parity P: Y(%,t) - y Y (-%,t)
* A, transforms in the same way as d,, - this is a symmetry of the full Hamiltonian

* P interchanges ; and Y (PLl,bR L=y /R) electromagnetic interaction does not distinguish two components and

interacts with both of them in the same way

* Charge conjugation C: (¥, t) > —iy?y* (4, t)
* ( swaps particles for antiparticles

* The symmetry of the total Hamiltonian of fermions and photons also involves transformation 4, — Aj;

(iy“@u +eyH4, — m)yY¢ = (iy“@u — eyHAf — m)©

c _
Au—_Au

* As a consequence, photons have C = —1 (EM field changes sign under C)



Charge conjugation eigenstates

Most particles are not eigenstates of C (e.g. leptons, quarks, charged pions) — particle needs to be its

own antiparticle
Photons, and neutral mesons that are combinations of uii, dd, ss, c¢ are eigenstates

Note that being neutral does not imply that a particle is a charge conjugation eigenstate, e.g. neutron

Cln) = |n)

System consisting of a fermion and its antiparticle is eigenstate with C = (—1)!*S (compare with parity

P=(-D")



Symmetries in QED: examples |

Bound system of interacting electron + positron may be in different states, similar to that of hydrogen

atom

For instance, they can be in state with zero spin momentum — parapositronium, S = 0, and an exited state

with § = 1 is called ortopositronium

When one applies C —transformation to a system of particle + antiparticle, the wave function Y (e~,e™)

turns to Y(e*, e”), which differs from the initial one by a factor of (—1)/ due to permutation of fermions

Spatial permutation of two fermions gives —1 times parity factor (—1)%. If spins are antiparallel (S = 0).
spin wave function is antisymmetric, while for parallel spins (S = 1) it is symmetric — restoring initial

spin configuration gives additional (—1)>*! factor

Parapositronium (C =1) -y +y
Ortopositronium (C = —1) >y +y +vy




Symmetries in QED: examples |

* In the lowest order of perturbation theory Furry’s theorem states that the probability is zero

* One can speculate that in any order there are such loops with odd number of photons and therefore the

process has zero probability
* On the other hand, the processy + y — y + y + v is forbidden in general, since

(_ 1)ny,initial =+ (_ 1)ny,final

just analyzing the initial and final states i
forbidden

// _A‘\



Symmetries in QED: examples |

» Neutral pion 7° decays into two photons
no(ut —dd) -y +y

» This is an electromagnetic annihilation process. From the final C —value, C = (—1)% = 1 we can infer

that C = 1 for neutral pions

* Then a process 1% = y +y + ¥ (Cpal = —1) is forbidden!




Symmetries in general

As we have shown, one can check if a process is allowed without even knowing explicitly physics

beyond the process
This happens because particles have quantum numbers related to symmetries

If an interaction respects a symmetry, the corresponding quantum numbers must be conserved

* a trivial example is conservation of electric charge
Let’s show how this works in general
Assume we have a symmetry operator 4 that commutes with the Hamiltonian
|[A,H] =0

then the eigenstates of H are also eigenstates of A



Symmetries in general

* Consider a Hamiltonian that is a sum of a free particle Hamiltonian Hy and interaction V: H = Hy +V
* If A is a symmetry for both Hy and V
|A,Hy]l = [A,V] =0

* then the eigenstates of H, (particles we observe) can be divided into sets with definite value of A.

During the time evolution, the value of A does not change



Symmetries in general

* If we start with an eigenstate of the initial Hamiltonian Hy, transitions are possible only into states with

the same eigenvalues of A

* We can find out whether a process is forbidden by a symmetry by just analyzing initial and final states

— selection rules

* The result does not depend on the explicit form of the interaction V, i.e., this works not only within the

framework perturbation theory but in general



Examples of P violation: beta decay

Experimental setup

®0Co decays emitting two fermions: a neutrino and an electron

During the transition the nuclei change their angular momentum by A] = 1

There are two options with different helicities

They are related by parity but only one option is observed!



Examples of P violation: beta decay

B

‘ -
P

observed

Parity
transform

NOT observed

« In 8 decays of °°Co only neutrinos whose spin is antiparallel to their momentum were observed

Parity is violated in f§ decays

24



Examples of P violation: beta decay

* Neutrinos are produced with positron and antineutrinos with electrons

* Antineutrinos produced in f —decays have only positive helicity (their spin is always parallel to their

momentum)

* It seems that the actual symmetry of nature is the combined CP symmetry, when in addition to

changing helicity we replace a particle by its antiparticle

 For fermions, parity transformation P could also include C conjugation. A particle looking in the mirror

sees its antiparticle!



Examples of P violation: beta decay

\/’/
", V
e ) be—
h=-—1/2 |
s CP ’ h=+1/2
A
. XF B-

* It seems that also CP is slightly violated in nature
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Examples of P violation: beta decay

To construct a theory of this process, we must use helicity states. However, the helicity states are not

Lorentz-invariant!

Solution: use eigenstates of ys instead. In addition, y5 respects CP as well

* this means that Y (v,h = —) and Y (v, h = +) for massless neutrinos both belong to ¥, spinor

The Hamiltonian should contain only ¢,

Only left-handed neutrinos (with left chirality) interact weakly. If neutrinos were massless, the right-
handed counterpart (right-handed neutrinos) would not interact with anything and therefore be

redundant

Although for electrons the difference between helicity and chirality plays some role (electrons are
produced with both helicities), interactions at higher energies E > m, also reveal the fact that only the

left component, 1, interacts weakly



Kaon decays

« Neutral kaons differ from their antiparticles: K°(d5) # K°(ds)

 These particles actually live in two superpositions: one with positive CP value K¢(CP = 1) and one with

negative one K; (CP = —1)

* Pions have P = —1 and C = 1 (neutral). The allowed decays modes for the two neutral kaons are
Ks - ('l ormtm™) CP = +1
K; —» CP =-1

(total angular momentum is zero)

* Since my only sightly exceeds 3m, K; — 3w decay width is kinematically suppressed and therefore

K; (K — long) lifetime is much larger than that of Ks(K — short)



Summary

We studied C and P symmetries

Learned selection rules — can be used to investigate if a process is forbidden by analysing initial and
final states of an interaction (when the interaction and the free-particle Hamiltonian both conserve a

given quantity)

Next semester: unlike the strong and EM interactions, the weak interaction violates both P and CP

symmetry

One needs (beyond other prerequisites) both P and CP violation to accumulate charge



Summary of Lecture 13

Main learning outcomes

* Discussion on discrete symmetries: charge conjugation and parity
« Symmetry transformation for fermions
* Meson parity, helicity and chirality

« Examples of symmetry violation



