

Particle Physics I

Lecture 13: Discrete symmetries – C, P, T

Prof. Radoslav Marchevski December 11th 2024

Learning targets

Learning targets

- Discussion on discrete symmetries: charge conjugation and parity
- Symmetry transformation for fermions
- Meson parity, helicity and chirality
- Examples of symmetry violation

Symmetries

- The symmetries of empty space should be respected by a physical theory
 - example: there is no preferred direction in space ⇒ any experiment should give the same results before and after rotation
- In addition to the continuous space-time symmetries (rotations, translations) there are two discrete transformations
 - Parity (P): $(t, \vec{x}) \rightarrow (t, -\vec{x})$
 - Time reversal $(T): (t, \vec{x}) \to (-t, \vec{x})$
- From the definition, it follows that $P^2 = T^2 = 1$

Symmetries: parity

• We say that a theory obeys *P* symmetry if there is no experiment that can distinguish between a world and its mirror image

P-even	P-odd
?	?

Symmetries: parity

• We say that a theory obeys *P* symmetry if the is no experiment that can distinguish between a world and its mirror image

P-even	P-odd
time t	position \vec{x}
angular momentum	momentum $ec{p}$
mass density	force
electric charge	electric current
magnetic field	electric field

Symmetries: parity

• Parity transformation on a scalar field φ and a vector field A_{μ}

$$\varphi(\vec{x},t) \to \varphi'(\vec{x},t) = \varphi(-\vec{x},t)$$

$$\begin{pmatrix} A_0(\vec{x},t) \\ \vec{A}(\vec{x},t) \end{pmatrix} \rightarrow \begin{pmatrix} A'_0(\vec{x},t) \\ \vec{A}'(\vec{x},t) \end{pmatrix} = \begin{pmatrix} A_0(-\vec{x},t) \\ -\vec{A}(-\vec{x},t) \end{pmatrix}$$

• For a plane wave, a coordinate transformation defines how the momentum transforms

$$\phi_{\vec{p}} \propto e^{i\vec{p}\cdot\vec{x}} \rightarrow e^{-i\vec{p}\cdot\vec{x}} \propto \phi_{-\vec{p}} \quad \vec{p} \rightarrow -\vec{p}$$

• For electromagnetic field, polarization vector reflects as well

$$\vec{A}_{\vec{p}} \propto \epsilon e^{i\vec{p}\cdot\vec{x}} \rightarrow -\epsilon e^{-i\vec{p}\cdot\vec{x}} \propto -\vec{A}_{-\vec{p}} \quad \epsilon \rightarrow -\epsilon$$

What about fermions?

Transform non-trivially under rotations and Lorentz transformations, but not as normal vectors.

What do they see in the mirror?

Fermion quantum numbers

- Let's start by first fixing the electron state using quantum numbers eigenvalues of operators that commute with the Hamiltonian
- For the Dirac Hamiltonian there are two such quantities: momentum and helicity!

Momentum:
$$\left[\hat{\vec{p}}, H\right] = \left[-i\nabla, H\right] = 0$$

Helicity
$$\left(h \equiv \frac{\vec{\Sigma} \cdot \vec{p}}{|\vec{p}|}\right)$$
: $\left[\vec{\Sigma} \cdot \vec{p}, H\right] = \left[-i\nabla, H\right] = 0$ (lecture/exercise sheet 6)

- The two operators are also commuting with each other: [p, h] = 0
- The state of a fermion can be described by its *energy E*, *momentum p*, and *helicity h*
- States with fixed (E, \vec{p}, h) form a basis in Hilbert space of Dirac fermions

Parity transformation for fermions

- The parity transformation acts on the basis states as $(E, \vec{p}, h) \rightarrow (E, -\vec{p}, -h)$
- How does it act on an arbitrary state ψ ?
- Dirac equation transforms as:

$$(i\gamma^{\mu}\partial_{\mu}-m)\psi(\vec{x},t)=(i\gamma^{0}\partial_{0}+i\gamma^{i}\partial_{i}-m)\psi\rightarrow(i(\gamma^{\mu}\partial_{\mu})'-m)\psi_{P}=(i\gamma^{0}\partial_{0}-i\gamma^{i}\partial_{i}-m)\psi_{P}$$

- Where ψ_P is a spinor ψ after parity transformation
- To restore the initial Dirac equation, one should take $\psi_P = \gamma^0 \psi(-\vec{x}, t)$ so that

$$P\psi(\vec{x},t) = \gamma^0 \psi(-\vec{x},t)$$

• Example: show explicitly that the helicity is a P –odd quantity (Ph = -hP)

Chirality

- In the given reference frame, the basis of Dirac fermions can be chosen as (E, \vec{p}, h)
- However: helicity is not Lorentz-invariant as long as the mass of the particle is not zero
- For any particle with $m \neq 0$ we can always make a Lorentz boost flipping the direction of \vec{p} and therefore flipping the sign of $h: h \rightarrow -h$
- There exists a similar *P* –odd scalar quantity, that respects relativity but in general is not conserved: **chirality**
- In the massless limit helicity and chirality coincide meaning that all the states with definite *h* also have definite chirality

Chirality

$$\psi = \begin{pmatrix} \Psi_L \\ \Psi_R \end{pmatrix}$$

- In the Weyl basis $\gamma^{\mu} = \begin{pmatrix} 0 & \sigma^{\mu} \\ \tilde{\sigma}^{\mu} & 0 \end{pmatrix}$ the spinor ψ can be split into two independent parts Ψ_L , Ψ_R
- These parts evolve independently for massless particles:

$$(i\gamma^{\mu}\partial_{\mu})\psi = \begin{pmatrix} 0 & i(\partial_{t} + \vec{\sigma} \cdot \vec{\nabla}) \\ i(\partial_{t} - \vec{\sigma} \cdot \vec{\nabla}) & 0 \end{pmatrix} \begin{pmatrix} \Psi_{L} \\ \Psi_{R} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \implies i(\partial_{t} + \vec{\sigma} \cdot \vec{\nabla})\Psi_{R} = 0$$
$$i(\partial_{t} - \vec{\sigma} \cdot \vec{\nabla})\Psi_{L} = 0$$

$$\psi_L = \begin{pmatrix} \Psi_L \\ 0 \end{pmatrix}$$
 Two independent free particles $\psi_R = \begin{pmatrix} 0 \\ \Psi_R \end{pmatrix}$

• We call ψ_L left-chiral spinor and ψ_R right-chiral spinor

Chirality

• Left and right-chiral spinors $\psi_{L/R}$ are eigenstates of the *chirality operator* γ^5

$$\gamma_{5} = i\gamma^{0}\gamma^{1}\gamma^{2}\gamma^{3} = \begin{pmatrix} -\mathbb{I} & 0 \\ 0 & \mathbb{I} \end{pmatrix} \Rightarrow \qquad \begin{aligned} \gamma_{5}\Psi_{R} &= \Psi_{R} \\ \gamma_{5}\Psi_{L} &= -\Psi_{L} \end{aligned}$$

• We can extract left and right-chiral parts of the arbitrary spinor ψ using the *chirality projectors*

$$\psi_L = \frac{1 - \gamma_5}{2} \psi \qquad \qquad \psi_R = \frac{1 + \gamma_5}{2} \psi$$

Relation between helicity and chirality

• Chirality matrix anticommutes with all γ matrices

$$\{\gamma^{\mu}, \gamma_5\} = 0$$

- In particular, $\gamma_5 \gamma^0 = -\gamma^0 \gamma_5$. Hence *chirality* is *P-odd*, i.e. $P\psi_{L/R} = \psi_{R/L}$
- Unlike helicity, chirality is Lorentz-invariant, but not conserved as long as $m \neq 0$
- Let us find relation between helicity and chirality for a massless particles
- For a plane wave ansatz $\psi_{\vec{p}}(\vec{x}) = \exp[-p_{\mu}x^{\mu}]u(\vec{p})$ Dirac equation gives: $p_0u(\vec{p}) = \gamma_0(\vec{\gamma} \cdot \vec{p})u(\vec{p})$
 - multiplying it by γ_5 from the left and using $\gamma_5 \gamma^0 \gamma^i = \Sigma_i$

$$\gamma_5 \psi \begin{cases} +2\hat{h}\psi, & p_0 > 0 \\ -2\hat{h}\psi, & p_0 < 0 \end{cases}$$

• i.e. for massless particle chirality and helicity are defined simultaneously (however, up to a minus sign for antiparticles)

Summary on helicity and chirality

- 1. Helicity is conserved and related to the momentum and spin of the particle \Rightarrow measurable physical quantity
- 2. Chirality is an unobservable mathematical construction, allowing correct relativistic description
- 3. Both are P –odd
- 4. For massless particles, states with definite helicity and chirality coincide

Meson parity

• Parity of mesons

$$P(q\overline{q}) = P(q)P(\overline{q}) \times (-1)^{l} = (+1)(-1)(-1)^{l} = (-1)^{l+1}$$

using that we defined the intrinsic parity of particles as +1 (and hence that of antiparticles as -1)

- As a consequence, l = 0 mesons have odd intrinsic parity
- The photon has parity -1, as have all other exchange particles (vector bosons)
- Parity is conserved in QED and QCD (but not in the weak interaction)

Symmetries of QED

$$(i\gamma^{\mu}\partial_{\mu} - e\gamma^{\mu}A_{\mu} - m)\psi(\vec{x},t) = 0$$

- Parity $P: \psi(\vec{x}, t) \rightarrow \gamma^0 \psi(-\vec{x}, t)$
 - A_{μ} transforms in the same way as ∂_{μ} this is a symmetry of the full Hamiltonian
 - P interchanges ψ_L and ψ_R ($P_L\psi_{R/L} = \psi_{L/R}$) electromagnetic interaction does not distinguish two components and interacts with both of them in the same way
- Charge conjugation $C: \psi(\vec{x}, t) \to -i\gamma^2 \psi^*(\vec{x}, t)$
 - *C* swaps particles for antiparticles
 - The symmetry of the total Hamiltonian of fermions and photons also involves transformation $A_{\mu} \rightarrow A_{\mu}^{C}$

$$(i\gamma^{\mu}\partial_{\mu} + e\gamma^{\mu}A_{\mu} - m)\psi^{C} \Longrightarrow (i\gamma^{\mu}\partial_{\mu} - e\gamma^{\mu}A_{\mu}^{C} - m)\psi^{C}$$

$$A_{\mu}^{C} = -A_{\mu}$$

• As a consequence, photons have C = -1 (EM field changes sign under C)

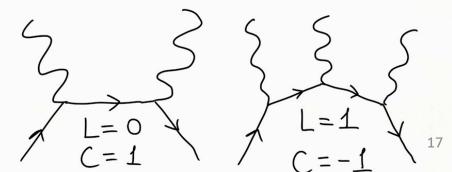
Charge conjugation eigenstates

- Most particles are not eigenstates of *C* (e.g. leptons, quarks, charged pions) particle needs to be its own antiparticle
- Photons, and neutral mesons that are combinations of $u\bar{u}$, $d\bar{d}$, $s\bar{s}$, $c\bar{c}$ are eigenstates
- Note that being neutral does not imply that a particle is a charge conjugation eigenstate, e.g. neutron $C|n\rangle \to |\bar{n}\rangle$
- System consisting of a fermion and its antiparticle is eigenstate with $C = (-1)^{l+s}$ (compare with parity $P = (-1)^{l+1}$)

Symmetries in QED: examples I

- Bound system of interacting electron + positron may be in different states, similar to that of hydrogen atom
- For instance, they can be in state with zero spin momentum *parapositronium*, S = 0, and an exited state with S = 1 is called *ortopositronium*
- When one applies C —transformation to a system of particle + antiparticle, the wave function $\psi(e^-, e^+)$ turns to $\psi(e^+, e^-)$, which differs from the initial one by a factor of $(-1)^J$ due to permutation of fermions
- Spatial permutation of two fermions gives -1 times parity factor $(-1)^L$. If spins are antiparallel (S = 0). spin wave function is antisymmetric, while for parallel spins (S = 1) it is symmetric restoring initial spin configuration gives additional $(-1)^{S+1}$ factor

Parapositronium (
$$C=1$$
) $\rightarrow \gamma + \gamma$
Ortopositronium ($C=-1$) $\rightarrow \gamma + \gamma + \gamma$

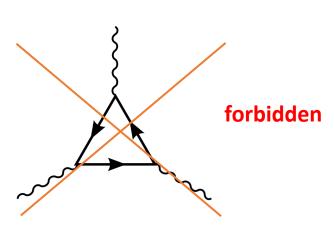


Symmetries in QED: examples II

- In the lowest order of perturbation theory Furry's theorem states that the probability is zero
- One can speculate that in any order there are such loops with odd number of photons and therefore the process has zero probability
- On the other hand, the process $\gamma + \gamma \rightarrow \gamma + \gamma + \gamma$ is forbidden in general, since

$$(-1)^{n_{\gamma,\text{initial}}} \neq (-1)^{n_{\gamma,\text{final}}}$$

just analyzing the initial and final states

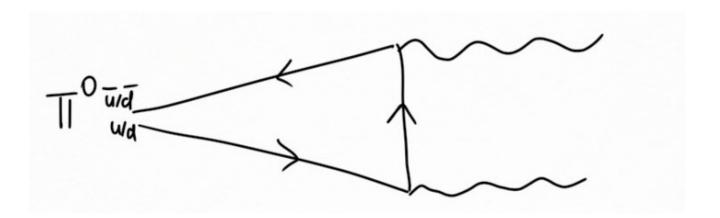


Symmetries in QED: examples II

• Neutral pion π^0 decays into two photons

$$\pi^0(u\bar{u}-d\bar{d}) \to \gamma + \gamma$$

- This is an electromagnetic annihilation process. From the final C —value, $C = (-1)^2 = 1$ we can infer that C = 1 for neutral pions
- Then a process $\pi^0 \to \gamma + \gamma + \gamma$ ($C_{\text{final}} = -1$) is forbidden!



Symmetries in general

- As we have shown, one can check if a process is allowed without even knowing explicitly physics beyond the process
- This happens because particles have quantum numbers related to symmetries
- If an interaction respects a symmetry, the corresponding quantum numbers must be conserved
 - a trivial example is conservation of electric charge
- Let's show how this works in general
- Assume we have a symmetry operator *A* that commutes with the Hamiltonian

$$[A,H]=0$$

then the eigenstates of *H* are also eigenstates of *A*

Symmetries in general

- Consider a Hamiltonian that is a sum of a free particle Hamiltonian H_0 and interaction $V: H = H_0 + V$
- If A is a symmetry for both H_0 and V

$$[A, H_0] = [A, V] = 0$$

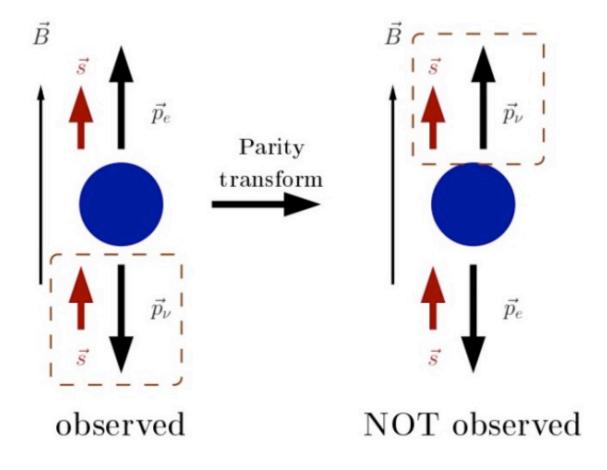
• then the eigenstates of H_0 (particles we observe) can be divided into sets with definite value of A. During the time evolution, the value of A does not change

Symmetries in general

- If we start with an eigenstate of the initial Hamiltonian H_0 , transitions are possible only into states with the same eigenvalues of A
- We can find out whether a process is forbidden by a symmetry by just analyzing initial and final states
 selection rules
- The result does not depend on the explicit form of the interaction *V*, i.e., this works not only within the framework perturbation theory but in general

Experimental setup

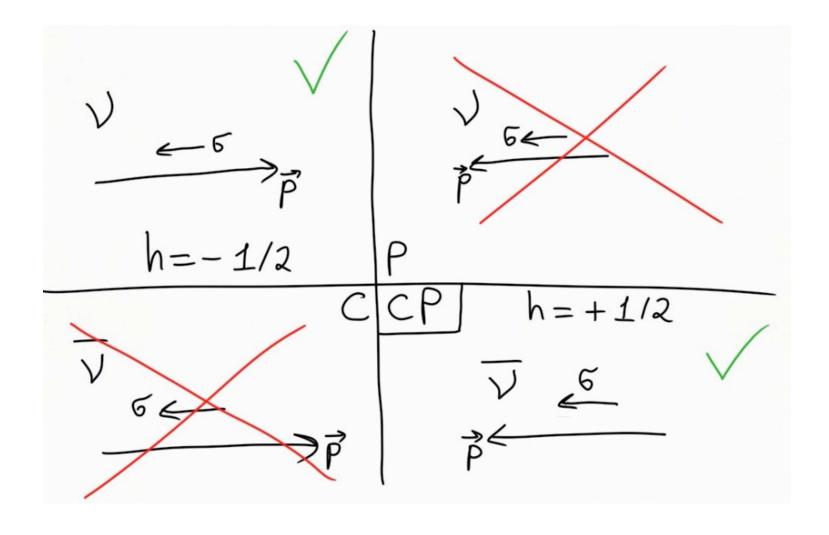
- ⁶⁰Co decays emitting two fermions: a neutrino and an electron
- During the transition the nuclei change their angular momentum by $\Delta J = 1$
- There are two options with different helicities
- They are related by parity but only one option is observed!



• In β decays of ^{60}Co only neutrinos whose spin is antiparallel to their momentum were observed

Parity is violated in β decays

- Neutrinos are produced with positron and antineutrinos with electrons
- Antineutrinos produced in β —decays have only positive helicity (their spin is always parallel to their momentum)
- It seems that the actual symmetry of nature is the combined *CP* symmetry, when in addition to changing helicity we replace a particle by its antiparticle
- For fermions, parity transformation *P* could also include *C* conjugation. A particle looking in the mirror sees its antiparticle!



• It seems that also *CP* is slightly violated in nature

- To construct a theory of this process, we must use helicity states. However, the helicity states are not Lorentz-invariant!
- **Solution:** use eigenstates of γ_5 instead. In addition, γ_5 respects *CP* as well
 - this means that $\psi(v, h = -)$ and $\psi(\bar{v}, h = +)$ for massless neutrinos both belong to ψ_L spinor
- The Hamiltonian should contain only ψ_L
- Only left-handed neutrinos (with left chirality) interact weakly. If neutrinos were massless, the right-handed counterpart (right-handed neutrinos) would not interact with anything and therefore be redundant
- Although for electrons the difference between helicity and chirality plays some role (electrons are produced with both helicities), interactions at higher energies $E\gg m_e$ also reveal the fact that only the left component, ψ_L , interacts weakly

Kaon decays

- Neutral kaons differ from their antiparticles: $K^0(d\bar{s}) \neq \overline{K^0}(\bar{d}s)$
- These particles actually live in two superpositions: one with positive CP value $K_S(CP = 1)$ and one with negative one $K_L(CP = -1)$
- Pions have P = -1 and C = 1 (neutral). The allowed decays modes for the two neutral kaons are

$$K_S \to \pi\pi$$
 $(\pi^0 \pi^0 \text{ or } \pi^+ \pi^-)$ $CP = +1$

$$K_L \to \pi\pi\pi$$
 $CP = -1$

(total angular momentum is zero)

• Since m_K only sightly exceeds $3m_\pi$, $K_L \to 3\pi$ decay width is kinematically suppressed and therefore $K_L(K-\text{long})$ lifetime is much larger than that of $K_S(K-\text{short})$

Summary

- We studied *C* and *P* symmetries
- Learned selection rules can be used to investigate if a process is forbidden by analysing initial and final states of an interaction (when the interaction and the free-particle Hamiltonian both conserve a given quantity)
- Next semester: unlike the strong and EM interactions, the weak interaction violates both *P* and *CP* symmetry
- One needs (beyond other prerequisites) both *P* and *CP* violation to accumulate charge

Summary of Lecture 13

Main learning outcomes

- Discussion on discrete symmetries: charge conjugation and parity
- Symmetry transformation for fermions
- Meson parity, helicity and chirality
- Examples of symmetry violation